Assessing the sensitivity of avian species abundance to land cover and climate

TitleAssessing the sensitivity of avian species abundance to land cover and climate
Publication TypeJournal Article
Year of Publication2016
AuthorsLeBrun, Jaymi J., Thogmartin Wayne E., Thompson Frank R., Dijak William D., and Millspaugh Joshua J.
JournalEcosphere
Volume7
Issue6
Paginatione01359
Date PublishedJan-06-2016
Keywordsbird, central US, climate change, conservation, land cover
Abstract

Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

URLhttp://doi.wiley.com/10.1002/ecs2.1359https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fecs2.1359
DOI10.1002/ecs2.1359
Short TitleEcosphere