Minnesota Department of Natural Resources

Also collaborating on these NE CSC projects

“Hyperscale” Modeling to Understand and Predict Temperature Changes in Midwest Lakes

Many inland waters across the United States are experiencing warming water temperatures. The impacts of this warming on aquatic ecosystems are significant in many areas, causing problems for fisheries management, as many economically and ecologically important fish species are experiencing range shifts and population declines. Fisheries and natural resource managers need timely and usable data and tools in order to understand and predict changes to lakes and their biota.
 

An Integrated Assessment of Lake and Stream Thermal Habitat Under Climate Change

Water temperatures are warming in lakes and streams, resulting in the loss of many native fish. Given clear passage, coldwater stream fishes can take refuge upstream when larger streams become too warm. Likewise, many Midwestern lakes “thermally stratify” resulting in warmer waters on top of deeper, cooler waters. Many of these lakes are connected to threatened streams. To date, assessments of the effects of climate change on fish have mostly ignored lakes, and focused instead on streams.

Great Lakes Silviculture Prescription Library

This project is developing an on-line platform to enable rapid sharing and cataloging of silviculture case studies documenting adaptive forest management approaches across MI, MN, Ontario, and WI.  The goal of this project is to create a clearinghouse of information for forest managers across the region to disseminate ideas on addressing emerging issues and tracking effectiveness of a given approach.  The Prescription Library will serve as the basis for regional continuing education offerings for natural resource professionals throughout Michigan, Minnesota, Ontario, and Wisconsin.

Climate and disturbance factors affecting shifts between grassland and forest biomes over the past century within the upper Midwest

This project aims to quantify the range in variability in forest dynamics and climate responses for range-margin populations of Pinus banksiana and Picea mariana so as to generate management guidelines for conserving these forests on the landscape in an uncertain climatic future.  These species are the cornerstone for several upland and lowland habitat types on the western edge of the Northeast CSC and are particularly vulnerable to future changes in climate and disturbance regimes.

Effects of climate, disturbance, and management on the growth and dynamics of temperate and sub-boreal forest ecosystems within the Lake States and New England

This project is using a combination of long-term data records and recently established large-scale adaptive management studies in managed forests across the Lake States, New England, Intermountain West, and Black Hills to identify forest management strategies and forest conditions that confer the greatest levels of resistance and resilience to past and emerging stressors and their relevance in addressing future global change.  This work represents a broad partnership between scientists from the USFS Northern Research Station, USFS Rocky Mountain Research Station, USGS, University of MN,  Un

Subscribe to Minnesota Department of Natural Resources