Upper Mississippi River and Great Lakes Region Joint Venture

Also collaborating on these NE CSC projects

Using agent-based models to identify conservation solutions to large scale environmental variation and climate change

Effective migratory bird management and conservation requires an integrate approach at multiple spatial and temporal scales.  We developed a spatially explicit agent-based model for dabbling ducks during spring migration. We are modeling foraging and resting behavior at prominent spring migration stopover sites throughout the midcontinent region.  Emergent properties of the working model include spring migration stopover duration, movement distances and survival.

Development of Dynamically-Based 21st Century Projections of Snow, Lake Ice, and Winter Severity for the Great Lakes Basin to Guide Wildlife-Based Adaptation Planning, with Emphasis on Deer and Waterfowl

Our project focused on anticipated effects of 21st century climate change on winter severity, snowpack, and lake ice across the Great Lakes Basin and the response of wildlife populations, namely white-tailed deer and dabbling ducks. Winter conditions have changed substantially since the mid-20th century, with rising temperatures, declining lake ice cover, and increased lake-effect snowfall. Nonetheless, due coarse resolution, poor lake representation, and insufficient treatment of lake-effect processes in global climate models, basinwide climate change projections remain uncertain.

Subscribe to Upper Mississippi River and Great Lakes Region Joint Venture