Spatial and Temporal Variability in Fish Populations

Brian J. Irwin

Northeast Climate Science Center's Regional Science Meeting
University of Massachusetts, Amherst
May 2017
Acknowledgements

Northeast Climate Science Center

Great Lakes Science Center

Quantitative Fisheries Center

The University of Georgia

WARNELL School of Forestry & Natural Resources

Cornell University Department of Natural Resources

NYS Department of Environmental Conservation

USGS Great Lakes Science Center

Ontario Ministry of Natural Resources and Forestry

Georgia Cooperative Fish and Wildlife Research Unit Cooperators
Acknowledgements

- **PhD student**: Tiffany Vidal (Univ. of Georgia)
 - MA Division of Marine Fisheries
 - Understanding the role of variability in fish population response to changing environmental conditions

- **Co-PIs**: Jim Bence (Michigan State Univ.), Ty Wagner (PA Coop. Unit)

- **Partners**: Jim Hoyle (OMNR), Randy Jackson (Cornell Univ.), Chuck Madenjian (USGS), Lars Rudstam (Cornell Univ.)
Goals for Talk

1) Case-study Example
 — Long-term monitoring data
 — Large-scale Ecological Change
 — Variance partitioning
 — Is variance structure responsive to perturbation?

2) Implications
 — Monitoring & Management
 — Climate Change
Using Variance Structure to Quantify Responses to Perturbation in Fish Catches

Tiffany E. Vidal
D. B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, Georgia 30602, USA

Brian J. Irwin
U.S. Geological Survey, Georgia Cooperative Fish and Wildlife Research Unit, D. B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, Georgia 30602, USA

Tyler Wagner
U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, Pennsylvania 16802, USA

Lars G. Rudstam and James R. Jackson
Biological Field Station, Cornell University, 900 Shackelton Point Road, Bridgeport, New York 13030, USA

James R. Bence
Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, Michigan 48824, USA
Perturbation

“any deviation, or displacement, from the ‘nominal state’ in structure or function at any level of organization. The nominal state is the normal operating range, including expected variance.”

– Odum et al. 1979

“[I]t is not true that a species thus attacked comes back. The disturbed balance often gives a new species ascendancy and destroys forever the old relationships.”

(As cited in Roberts. 2007. The Unnatural History of the Sea.)
Fishery-independent Surveys

- Index of relative abundance
- Multiple visits
 - Sites
 - Years
- Variable over space and time
 - Catch
 - Effort

Credit: NOAA GLERL

MI Sea Grant
Case Study: Oneida Lake, NY

- Long-term gillnet surveys
 - 15 sites, >50 years

1958 → early 1990s → 2010
Depiction of variance Components

Spatial

Coherent temporal

Ephemeral temporal

Ecosystem response

(A) (B) (C)

Time

Modified from Irwin et al. 2013
\[Y_{tj} \sim NB(\mu_{tj}, \kappa_p) \]

\[\mu_{tj} = e^{\eta_{tj}} \]

\[\eta_{tj} = \nu_p + \lambda(t) + a_{tp} + b_{jp} \]

\[\text{Coherent} \quad a_{tp} \sim N(0, \sigma_{a\,p} \, \|^2) \]

\[\text{Spatial} \quad b_{jp} \sim N(0, \sigma_{b\,p} \, \|^2) \]

\[\text{var}_{tj} = \mu_{tj} + \mu_{tj}^2 / \kappa_p \]

\[t = \text{year} \]

\[j = \text{site} \]

\[p = \text{period} \]

Vidal et al. 2017
Shift in Variance

Spatial

\[\sigma_{\text{pre}}^2 = 0.35 \]
\[\sigma_{\text{post}}^2 = 0.10 \]

Temporal

\[\sigma_{\text{pre}}^2 = 0.10 \]
\[\sigma_{\text{post}}^2 = 0.12 \]

Vidal et al. 2017
Summary (1 of 2)

- **Outputs / Results**
 - Capacity building via graduate education
 - Flexible & transferable modeling approach
 - Quantify population responses to large-scale change
 - More than just testing for mean response (e.g., spatial homogenization)

- **Collaborations & Stakeholders**
 - Partnerships: Universities (Cornell, UGA), State (NY DEC, GA DNR), and Federal (NECSC, USGS)
 - Question-driven monitoring, commitment to monitoring
 - Effective working relationships, discussions: questions, data usage & publication
Decision Making
— Spatial and temporal population structure has management & monitoring implications
 • e.g., priority locations (which sites to preserve?)
 • e.g., within year or among year changes?
 • e.g., eliminating sites or skipping years?

Gaps
— Confronting hypotheses with data
 • How do disturbances cause system instability?
 • “Other” species
 • “Exploration” monitoring