Future forest composition under a changing climate and adaptive forest management in southeastern Vermont

TitleFuture forest composition under a changing climate and adaptive forest management in southeastern Vermont
Publication TypeJournal Article
Year of Publication2021
AuthorsNevins, Matthias T., D'Amato Anthony W., and Foster Jane R.
JournalForest Ecology and Management
Volume479
Pagination118527
Date PublishedJan-01-2021
ISSN03781127
Keywordsaboveground biomass, climate change adaptation, forest composition, forest management, LANDIS-II, Northeast USA
AbstractThe uncertainty around future impacts of global environmental change on forest systems has led to a heightened focus on developing alternative management approaches to sustain critical forest ecosystem services. We use a spatially explicit forest landscape simulation model, LANDIS-II, to examine and evaluate a range of long-term effects of current and adaptive forest management under three projected climate scenarios within a forested landscape in southeastern Vermont, USA. We found that land-use legacies and the inertia associated with long-term forest successional trajectories are likely to be the dominant driver of future forest composition and biomass conditions for the next 100 years. Nevertheless, climate is projected to have a greater influence on species composition and aboveground biomass over the next 200 years. Eastern hemlock (Tsuga canadensis) and red spruce (Picea rubens) are likely to experience reductions in aboveground biomass and a compression of relative dominance on the landscape. American beech (Fagus grandifolia) and sugar maple (Acer saccharum) are projected to persist within the landscape and are likely to continue to occupy a prominent compositional position in the forests of this region. Extreme climate warming under RCP 8.5 projections resulted in compositional shifts and reductions in landscape-scale aboveground biomass at the end of the 200 year simulation when compared to RCP 4.5 and current climate projections. These findings highlight the expected lag effects of a changing climate, which present significant challenges and opportunities as managers seek to sustain critical ecosystem services in the region.
URLhttps://linkinghub.elsevier.com/retrieve/pii/S0378112720312962
DOI10.1016/j.foreco.2020.118527
Short TitleForest Ecology and Management