USDA Forest Service Northern Research Station (NRS)

Also collaborating on these NE CSC projects

Regional Effort on Invasive Species and Climate Change (RISCC) Management

Invasive species and climate change represent two of the five major global change threats to ecosystems.  An emerging initiative of the Northeast Climate Science Center aims to develop management-relevant research to improve invasive species management in the face of climate change.  Through working groups, information sharing and targeted research, this project addresses the information needs of invasive species managers in the context of climate change.

Does Variation in Life History and Evolutionary Response Affect Species Vulnerability to Climate Change? Implications for Management

Climate change poses a variety of threats to biodiversity. Most efforts to assess the likely impacts of climate change on biodiversity try to rank species based on their vulnerability under changed environmental conditions. These efforts have generally not considered the ability of organisms to adjust their phenotype to the changing environment. Organisms can do this by one of two ways. First, they can undergo adaptive evolutionary change. Second, they can adjust their phenotype via non-evolutionary pathways.

Impact of red squirrel distributional shifts on resiliency of birds in the face of climate change

Little is known about how shifting small mammal populations in response to climate change will affect the bird species that they predate.  This project is relying on historical sampling and 2014 field surveys and trapping to examine how red squirrel populations have shifted in the mountains of Vermont and New Hampshire and how birds may be affected by these shifts.

Effects of small impoundments on stream temperature regimes in the context of a changing climate

Small dams and impoundments are ubiquitous in stream networks in the northeastern and north central US.  Concerns about their effects on stream fish population connectivity and their risks to human infrastructure and safety have prompted efforts to remove many of these dams.  Dams also have  potentially significant impacts on stream thermal regimes, and as a consequence their removal may either ameliorate or exacerbate effects of increasing air temperatures.  Also, given their ubiquity, temperature modeling and monitoring efforts need to account for the effects of small impoundments for ass

Fitting the Climate Lens to Grassland Bird Conservation: Assessing Climate Change Vulnerability Using Demographically-Informed Species Distribution Models

To develop the framework to identify demographic sensitivities and assess the vulnerability of grassland bird species to future climate change. Objectives are to (1) Develop a strong partnership among managers and researchers to understand how climate change could be accounted for in conservation and management planning for grassland birds throughout the NE CSC region. (2) Develop spatially-explicit and temporally dynamic species distribution models for a select group of grassland birds.

Making decisions in complex landscapes: headwater stream management across multiple agencies

There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but their conservation is challenged by the need to address the threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project seeks to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale.

Modeling effects of climate change on spruce-fir forest ecosystems and associated priority bird populations

Eastern spruce-fir forest ecosystems are among the most vulnerable to climate change within the continuous US. The goal of this project was to develop tools to identify refugia sites most likely to support spruce-fir forest and its associated high-priority obligate spruce-fir bird species over the long-term under projected climate change scenarios.

Distributional changes in spruce-fir forests and forest-dependent wildlife: effects of climate variability and climate change

Spruce-fir forests reach their southern limit in New England and the Upper Midwest, and are predicted by coarse climate envelope models to be greatly reduced or extirpated by climate change in the next century.  However, complex climatology, involving orographic effects and consequent changes in temperature and precip, along with substantial spatial variability, make it imperative that we understand where the most resilient stands are likely to be, and what the effects of these changes mean for spruce-fir associated species.  In this project, we take advantage of long-term surveys at multip

Predicting fire frequency with chemistry and climate

We are developing a predictive model for estimating fire frequency based on theories and data in physical chemistry, ecosystem ecology, and climatology.  We are applying this model to produce maps of fire frequency under current climate and several climate warming scenarios across the United States.  Results of the project will provide information on fire frequency under alternative climate scenarios, information needed to parameterize forest landscape change models.

Changes in Forested Landscapes of the Eastern United States Under Alternative Climate Scenarios

Forests in the Eastern United States are in the early- and mid-successional stages recovering from historical land use. Succession, harvest, and climate are potentially important factors affecting forest composition and structure in the region. The goal of this project was to predict the distribution and abundance of dominant tree species across portions of the Eastern U.S. under alternative climate scenarios from present to the end of the century.

Climate and disturbance factors affecting shifts between grassland and forest biomes over the past century within the upper Midwest

This project aims to quantify the range in variability in forest dynamics and climate responses for range-margin populations of Pinus banksiana and Picea mariana so as to generate management guidelines for conserving these forests on the landscape in an uncertain climatic future.  These species are the cornerstone for several upland and lowland habitat types on the western edge of the Northeast CSC and are particularly vulnerable to future changes in climate and disturbance regimes.

Effects of climate, disturbance, and management on the growth and dynamics of temperate and sub-boreal forest ecosystems within the Lake States and New England

This project is using a combination of long-term data records and recently established large-scale adaptive management studies in managed forests across the Lake States, New England, Intermountain West, and Black Hills to identify forest management strategies and forest conditions that confer the greatest levels of resistance and resilience to past and emerging stressors and their relevance in addressing future global change.  This work represents a broad partnership between scientists from the USFS Northern Research Station, USFS Rocky Mountain Research Station, USGS, University of MN,  Un

Effects of hydrologic change and variability on upstream limits of stream fish distribution

Coldwater stream fishes are widely predicted to move upstream in response to warming downstream river temperatures.  However, in the process they may encounter upstream limits, which are likely to be exacerbated by increased hydrologic variability if upstream locations draining small basins switch from perennial to ephemeral flow, with important but currently unknown implications for coldwater habitat and stream fish populations.  In this project, we will look at the current determinants of upstream limitation for Eastern Brook Trout in several (8-10 large watersheds) throughout their nativ

Subscribe to USDA Forest Service Northern Research Station (NRS)