Local & County Governments and Organizations

Also collaborating on these NE CSC projects

Probabilistic projections of local sea level rise and vulnerability along the Northeast coastline

Global mean sea level rise of ~3 mm/year during the last decade was likely the highest rate since 1900, and continues to accelerate. It is therefore critical that coastal communities begin to develop adaptive responses to changing shorelines. We will update local sea level rise projections along the Northeast US coastline using a probabilistic model of future sea level distribution, combined with analysis of local trends and extreme sea level events from tide gauge records, to create regionally-appropriate projections.

Identifying and Evaluating Adaptation Science for Forest Habitats and Associated Bird Communities

The overall goals of this project are to identify the adaptation science needs of federal, state, and tribal stakeholders for forest habitats and to apply landscape simulation models to determine the effectiveness of existing and proposed adaptation strategies at sustaining forest-dependent bird species across the region.

Evaluation of Downscaled Climate Modeling Techniques for the Northeast U.S.

Downscaling is the process of making a coarse-scale global climate model into a finer resolution in order to capture some of the localized detail that the coarse global models cannot resolve.  There are two general approaches of downscaling:  dynamical and statistical.  Within those, many dynamical models have been developed by different institutions, and there are a number of statistical algorithms that have been developed over the years.

Regional Effort on Invasive Species and Climate Change (RISCC) Management

Invasive species and climate change represent two of the five major global change threats to ecosystems.  An emerging initiative of the Northeast Climate Science Center aims to develop management-relevant research to improve invasive species management in the face of climate change.  Through working groups, information sharing and targeted research, this project addresses the information needs of invasive species managers in the context of climate change.

WICCI: Second report on Climate Change Impacts in Wisconsin

WICCI is a grassroots effort to consolidate information about climate change impacts in Wisconsin.  Its first report, released in 2010, has played a critical role in elevating climate change within dialogue about environmental management across the state, and serves as the go-to resource for agencies, NGOs, and the public.  We are now working to update that document, focusing on new research in aquatic and other ecosystems, as well as case studies of impacts on Wisconsin's ecosystem services.

Climate Effects on the Culture and Ecology of Sugar Maple

Maple syrup is produced from the sap of sugar maple trees collected in the late winter and early spring. Native American tribes have collected and boiled down sap for centuries, and the tapping of maple trees is a cultural touchstone for many people in the northeast and Midwest. Because the tapping season is dependent on weather conditions, there is concern about the sustainability of maple sugaring as climate changes throughout the region. In spite of this, maple syrup production is increasing rapidly, with demand rising as more people appreciate this natural sweetener. 

Determining the Skill and Value of Incorporating Streamflow Forecasts into an Early Drought Detection System

This research investigates forecast skill in predicting the onset and severity of drought.  One of the unique features of NECASC research agenda is the active engagement of major a number of water supply utilities and an evaluation of how climate informed short-term streamflow forecasts and longer-range climate change forecasts influence the water supply systems.

Long-term record of Atmospheric N deposition interact with climate to influence estuarine impacts

Atmospheric depostion can be an important contribution to nitrogen loading in coastal regions. Atmospheric loading is suggested to have declined due to pollution control efforts, however the degree and impact of this has not been quantified on Cape Cod. Additionally, it is predicted that climate change, especially with respect to rain events and durations, may interact with atmospheric conditions to affect estaurine productivity.  This project will analyze a long-time series of atmpsheric N deposition and climate to determine trends and the associated impacts to estaurine systems. 

Great Lakes Silviculture Prescription Library

This project is developing an on-line platform to enable rapid sharing and cataloging of silviculture case studies documenting adaptive forest management approaches across MI, MN, Ontario, and WI.  The goal of this project is to create a clearinghouse of information for forest managers across the region to disseminate ideas on addressing emerging issues and tracking effectiveness of a given approach.  The Prescription Library will serve as the basis for regional continuing education offerings for natural resource professionals throughout Michigan, Minnesota, Ontario, and Wisconsin.

Impacts of sea level rise on ecosystems

A reconnaissance study distinguishes coastal areas of the northeastern U.S. (approx. Virginia to Maine) that will experience an inundation-dominated response to sea-level rise from those that will respond dynamically due to physical and bio-physical sedimentation and erosion processes. Areas that will be dominated by inundation include urban regions of intense development and/or coastal engineering, as well as bedrock coasts. Areas that will respond dynamically include beaches, unconsolidated cliffs, barrier islands, and wetlands.

Assessing climate change projections over the Northeast

Using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP3 data, we are developing a range of projections for the Eastern U.S.  We are also developing extreme event projections for stakeholder-relevant metrics (e.g., days over 90 °F, days below 32 °F, and days with over 1 inch of precipitation) based on CMIP5 models and North American Regional Climate Change Assessment Program (NARCCAP) dynamical downscaling.

The role of freshwater input in determining the contributions of different primary production sources to estuarine food webs in a tidal river

The hydrologic and biological dynamics of the oligohaline transitional zone, where nutrients and organic matter from the upper water shed first enter an estuary, can significantly impact the biogeochemical cycling and productivity of the entire estuarine ecosystem. We observed a strong influence of freshwater residency time on the contribution of benthic and pelagic production sources in the food web in the upper Parker River. By using long term data we are able to infer how changes in flow may alter the source of production and community composition in the oligohaline transitional zone.

Effects of moderate eutrophication on saltmarsh food webs

We examine the impacts of moderate nutrient enrichment on the production mummichog, Fundulus heteroclitus, as part of a 10-year whole ecosystem experiment in a Plum Island Sound saltmarsh. In the initial stages of nutrient enrichment we observed a classic bottom up stimulation response in fish production. However, after the first six years fish production declined rapidly. The mechanism for the decline is not known but we hypothesize indirect interactions with other saltmarsh consumers may play an important role, as well a habitat alteration.

Subscribe to Local & County Governments and Organizations