Research community

Also collaborating on these NE CSC projects

Indigenous Planning Summer Institute

The purpose of the Indigenous Planning Summer Institute (IPSI) is to introduce concepts of Indigenous planning; Examine the Sustainable Development Institute (SDI) theoretical model of sustainability as a guide for Indigenous Planning; Visit the Menominee community and forest and surrounding tribal communities to see different examples of Indigenous Planning in practice.

Fire history from lake sediments, & future fire vulnerability scenarios

Major forest fires are relatively uncommon in the northeastern United States, but due to the high population density of the region, if they became more common, the potential consequences for the region would be profound.  This project has several goals: first, to assess the history of large fires (before measured records) using sedimentary records from lakes; second, to compare the different measures (indices) of fire vulnerability used by various management agencies; third, to determine how well models simulate past fire vulnerability based on these indices; fourth, to assess fire vulnerab

WICCI: Second report on Climate Change Impacts in Wisconsin

WICCI is a grassroots effort to consolidate information about climate change impacts in Wisconsin.  Its first report, released in 2010, has played a critical role in elevating climate change within dialogue about environmental management across the state, and serves as the go-to resource for agencies, NGOs, and the public.  We are now working to update that document, focusing on new research in aquatic and other ecosystems, as well as case studies of impacts on Wisconsin's ecosystem services.

Quantifying shifting fish migration phenology across the Great Lakes

The timing of major life cycle events (reproduction, flowering, feeding) is set by seasonal environmental cues in many organisms.  Migratory fish in the Great Lakes are largely spring spawners, and they move into tributary rivers as the water warms in March-June.  There is growing evidence that the timing of these migrations is shifting under climate change, creating ever earlier migrations.  These changes in timing may profoundly change which species are present in rivers at a given time, potentially unraveling critical ecological linkages during the dynamic spring warming period.  We are

Air Quality Impacts of Climate-Induced Changes on Forest Composition

Forests play a role in air quality by supplying the atmosphere with volatile organic compounds (VOCs), precursors to ozone and aerosols. Different tree types emit different VOCs, each with different capacity to form ozone and aerosols. Therefore, shifts in forest composition may impact ozone and aerosol yields. Climate change is one of the expected drivers of forest change. In particular, the current range boundaries of a variety of species are expected to shift northward.

Does Variation in Life History and Evolutionary Response Affect Species Vulnerability to Climate Change? Implications for Management

Climate change poses a variety of threats to biodiversity. Most efforts to assess the likely impacts of climate change on biodiversity try to rank species based on their vulnerability under changed environmental conditions. These efforts have generally not considered the ability of organisms to adjust their phenotype to the changing environment. Organisms can do this by one of two ways. First, they can undergo adaptive evolutionary change. Second, they can adjust their phenotype via non-evolutionary pathways.

Climate Effects on the Culture and Ecology of Sugar Maple

Maple syrup is produced from the sap of sugar maple trees collected in the late winter and early spring. Native American tribes have collected and boiled down sap for centuries, and the tapping of maple trees is a cultural touchstone for many people in the northeast and Midwest. Because the tapping season is dependent on weather conditions, there is concern about the sustainability of maple sugaring as climate changes throughout the region. In spite of this, maple syrup production is increasing rapidly, with demand rising as more people appreciate this natural sweetener. 

An Integrated Assessment of Lake and Stream Thermal Habitat Under Climate Change

Water temperatures are warming in lakes and streams, resulting in the loss of many native fish. Given clear passage, coldwater stream fishes can take refuge upstream when larger streams become too warm. Likewise, many Midwestern lakes “thermally stratify” resulting in warmer waters on top of deeper, cooler waters. Many of these lakes are connected to threatened streams. To date, assessments of the effects of climate change on fish have mostly ignored lakes, and focused instead on streams.

Characterizing Local and Rangewide Variation in Demography and Adaptive Capacity of a Forest Indicator Species

Climate change will have sweeping impacts across the northeast, yet there are key gaps in our understanding about whether species will be able to adapt to this changing environment. This project will illuminate local and region-wide changes in forest ecosystems by studying the red-backed salamander, a species that is a strong indicator of forest conditions. This study will identify habitat and forest characteristics that improve the resiliency of forest dwelling amphibians and other wildlife to climate change.

Supporting Collaborative Relationships between Tribes and Climate Science in the Northeast Region to Address Climate Impacts

All peoples have a right to make meaningful plans for their future. For many Tribes in the northeast region of the United States, trends in the environment such as shifting lake levels, patterns of precipitation and other seasonal cycles pose potential problems. This includes financial burdens on Tribal governments and stresses on Tribal cultural practices such as harvesting medicinal plants and food staples such as wild rice. Consistent with the U.S.

Tribal Colleges and Universities: TCU Engagement with Tribal Communities on Climate Change Issues

This project is focused on the specific actions of CMNSDI as part of the CMN Campus and Menominee community to engage in climate change initiatives, as a means to provide demonstration and products that can be provided to other TCU's to consider and follow as they engage with their own communities on climate change and its predicted impacts to community life. This project will cover the development of educational materials for use in existing courses at CMN; an assessment and summary of existing TCU led or affiliated projects and any available results; creation o

Massachusetts Fish and Wildlife Climate Action Tool

The Massachusetts Wildlife Climate Action Tool is designed to inform and inspire local action to protect the Commonwealth’s natural resources in a changing climate. This Tool focuses on providing information for a range of local decision-makers, including conservation practitioners, landowners, municipal agencies, and community leaders, seeking to conduct on-the-ground climate change adaptation efforts.

With this tool, users can:

Using agent-based models to identify conservation solutions to large scale environmental variation and climate change

Effective migratory bird management and conservation requires an integrate approach at multiple spatial and temporal scales.  We are developing a spatially explicit agent-based model for dabbling ducks during spring migration. We are modeling foraging and resting behavior at prominent spring migration stopover sites throughout the midcontinent region.  Emergent properties of the working model include spring migration stopover duration, movement distances and survival.

Climate Assessments and Scenario Planning (CLASP)

This project aims to compile, synthesize, and communicate tailored climate change information to NE CSC stakeholders, including Landscape Conservation Cooperatives (LCC), state and federal agencies, and tribal communities. Our mission is to make climate science actionable by getting to know our stakeholders and the decisions they face, and delivering climate information that is directly relevant to their decisions and priorities.

Interactions between climate change and beavers in coastal streams

We are investigating the effects of climate on multiple aspects of river hydrology, inlding the interaction with expanding beaver populations in the Northeast. Our findings suggest that beavers increase water retentions, and sometimes flooding, in rivers which increases nitrogen removal.   Information from this project will allow managers and citizen groups to understand how the expansion of beavers will intersect with a changing climate to influence river flooding and freshwater quantity and q

Incorporating Social Drivers to Optimize Conservation Practices that Address Gulf Hypoxia and Declining Wildlife Populations Impacted by Extreme Climate Events

USFWS Landscape Conservation Cooperatives (LCCs) throughout the Mississippi River Basin (MRB) have identified high nutrient runoff, a major contributor to Gulf hypoxia, and declines in wildlife populations (especially grassland and riparian birds), as conservation challenges requiring collaborative action. This project will develop a spatial decision support system (DSS) to address these issues.

Early Career Climate Communications and Networking

The Department of the Interior and the U.S. Geological Survey have made it a priority to train the next generation of scientists and resource managers. The Climate Science Centers (CSC) and consortium institutions are working to contribute to this initiative by supporting and building a network of students across the U.S. interested in the climate sciences and climate adaptation.

Development of Dynamically-Based 21st Century Projections of Snow, Lake Ice, and Winter Severity for the Great Lakes Basin to Guide Wildlife-Based Adaptation Planning, with Emphasis on Deer and Waterfowl

Our project focuses on anticipated effects of 21st century climate change on winter severity, snowpack, and lake ice across the Great Lakes Basin and the response of wildlife populations, namely white-tailed deer and dabbling ducks. Winter conditions have changed substantially since the mid-20th century, with rising temperatures, declining lake ice cover, and increased lake-effect snowfall. Nonetheless, due coarse resolution, poor lake representation, and insufficient treatment of lake-effect processes in global climate models, basinwide climate change projections remain uncertain.

Great Lakes Silviculture Prescription Library

This project is developing an on-line platform to enable rapid sharing and cataloging of silviculture case studies documenting adaptive forest management approaches across MI, MN, Ontario, and WI.  The goal of this project is to create a clearinghouse of information for forest managers across the region to disseminate ideas on addressing emerging issues and tracking effectiveness of a given approach.  The Prescription Library will serve as the basis for regional continuing education offerings for natural resource professionals throughout Michigan, Minnesota, Ontario, and Wisconsin.

Developing historically-consistent and broadly-applicable monitoring, reporting, and verification system for quantifying forest change

Given the increasing impacts of climate change and natural disturbances on forest ecosystems across the US, there is a need for monitoring systems that allow for accurate and rapid detection of historic and future changes in forest area and carbon stocks.  This collaborative project between UMN, USFS, and NASA is piloting a Monitoring, Reporting, and Verification (MRV) accounting system that could be used within the context of the National Greenhouse Gas Inventory baseline reporting to the UN Framework Convention on Climate Change.

Understanding Conservation Management Decisions in the Face of Sea-Level Rise Along the U.S. Atlantic Coast

This project addresses a complex local scale conservation problem: managing the impacts associated with sea level rise and coastal flooding on migratory waterbirds and their habitat.  Decisions made by a conservation manager are complicated by three elements that can be expected to occur in almost any of these management situations.  Interactions among dynamic physical and biological processes affect both waterbirds and their habitat and food resources; these processes operate at local to flyway scales and are challenging to represent and analyze.

NorEaST – Stream Temperature Web Portal Demonstration and Application

Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, QA/QC, and make accessible stream temperature data collected through routine monitoring.

Fitting the Climate Lens to Grassland Bird Conservation: Assessing Climate Change Vulnerability Using Demographically-Informed Species Distribution Models

To develop the framework to identify demographic sensitivities and assess the vulnerability of grassland bird species to future climate change. Objectives are to (1) Develop a strong partnership among managers and researchers to understand how climate change could be accounted for in conservation and management planning for grassland birds throughout the NE CSC region. (2) Develop spatially-explicit and temporally dynamic species distribution models for a select group of grassland birds.

A Decisions Support Mapper for Conserving Stream Fish Habitats of the NE CSC Region

To integrate results of a current condition habitat assessment of stream habitats that accounts for fish response to human land use, water quality impairment, and fragmentation by dams with estimates of future stream habitats that may change with climate.  This was accomplished by 1) Characterization of the current condition of stream fish habitats throughout the NE CSC region based on responses of target fish species to a diverse set of landscape-scale disturbances; 2) Identification of stream reaches predicted to change with climate and likely to change distributions of target fish specie

Ecological and hydrological impacts of the emerald ash borer on black ash forests

This project examines the ecological and hydrological impacts of emerald ash borer on black ash-dominated wetlands throughout the Lake States using large-scale experimental studies documenting impacts of black ash mortality on ecosystem processes, wildlife communities, and evaluating potential mitigation and adaptation strategies under future climate and invasion scenarios.

Modeling effects of climate change on spruce-fir forest ecosystems and associated priority bird populations

Eastern spruce-fir forest ecosystems are among the most vulnerable to climate change within the continuous US. The goal of this project was to develop tools to identify refugia sites most likely to support spruce-fir forest and its associated high-priority obligate spruce-fir bird species over the long-term under projected climate change scenarios.

Collaboration in Action: Using the Menominee Model of Sustainability to Assess, Plan, and Build Capacity for Tribal Communities to Address Climate Change in the Northeast Climate Science Center Region

This project seeks to implement the recommendations included in Science Theme 6: "Impacts of climate variability and change on cultural resources" of the NECSC Strategic Science Agenda as a baseline for future efforts in the Northeast region. Tribal nations (Tribes) in the Northeast region face different challenges and opportunities regarding climate change impacts. Each Tribe is unique in terms of its cultural, economic, geographic, jurisdictional, social, and political situation.

Evaluating trends in streamflow extremes in the Northeast USA

The goal of this project is to identify statistical trends in observed and simulated maximum, minimum and base (mostly groundwater contribution during low flow months) flows in the Northeast Climate Science Center domain during the 20th and 21st century, assess the temporal (annual and seasonal) and spatial distribution of the trends, and evaluate the impact of warmer climates on the statistical properties of streamflows (mean and variance).

Impacts of sea level rise on ecosystems

A reconnaissance study distinguishes coastal areas of the northeastern U.S. (approx. Virginia to Maine) that will experience an inundation-dominated response to sea-level rise from those that will respond dynamically due to physical and bio-physical sedimentation and erosion processes. Areas that will be dominated by inundation include urban regions of intense development and/or coastal engineering, as well as bedrock coasts. Areas that will respond dynamically include beaches, unconsolidated cliffs, barrier islands, and wetlands.

Assessing climate change projections over the Northeast

Using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP3 data, we are developing a range of projections for the Eastern U.S.  We are also developing extreme event projections for stakeholder-relevant metrics (e.g., days over 90 °F, days below 32 °F, and days with over 1 inch of precipitation) based on CMIP5 models and North American Regional Climate Change Assessment Program (NARCCAP) dynamical downscaling.

Ecology of coastal migratory striped bass (Morone saxatalis)

Striped bass are a priority species for the Northeast LCC.  Subadult and small adult (375–475 mm total length) striped bass Morone saxatilis are abundant in northern estuaries during the spring through late fall.  However, little is known about how this important marine fish migrate among estuaries and use salt marshes as foraging areas.  This project assesses the migratory pathways of striped bass and is developing a quantitative understanding of diet and habitat use.

Effects of climate on wildlife demographics and population viability

We are investigating the effects of climate on multiple aspects of bird demography, including nest success, per nest productivity, juvenile survival, adult survival, and species viability.  We are using a long term data set on bird nesting success and new and existing data on juvenile and adult survival to discover climate effects on productivity and we are developing modeling approaches to predict regional species viability.

Predicting fire frequency with chemistry and climate

We are developing a predictive model for estimating fire frequency based on theories and data in physical chemistry, ecosystem ecology, and climatology.  We are applying this model to produce maps of fire frequency under current climate and several climate warming scenarios across the United States.  Results of the project will provide information on fire frequency under alternative climate scenarios, information needed to parameterize forest landscape change models.

Changes in Forested Landscapes of the Eastern United States Under Alternative Climate Scenarios

Forests in the Eastern United States are in the early- and mid-successional stages recovering from historical land use. Succession, harvest, and climate are potentially important factors affecting forest composition and structure in the region. The goal of this project was to predict the distribution and abundance of dominant tree species across portions of the Eastern U.S. under alternative climate scenarios from present to the end of the century.

Stream temperatures in the Driftless Area

The Driftless Region is blessed with an exceptional coldwater fishery (native brook trout and non-native brown trout).  Based on statistical modeling, it has been predicted that over the next 50 years brook trout will virtually disappear from the region and areal extent of brown trout will decrease significantly.  However, these predictions do not account for potentially significant increases in groundwater recharge and hence in baseflow as a result of likely increases in fall through spring precipitation and potential decreases in winter frost.  Nor do they account for the fact that basefl

Climate and disturbance factors affecting shifts between grassland and forest biomes over the past century within the upper Midwest

This project aims to quantify the range in variability in forest dynamics and climate responses for range-margin populations of Pinus banksiana and Picea mariana so as to generate management guidelines for conserving these forests on the landscape in an uncertain climatic future.  These species are the cornerstone for several upland and lowland habitat types on the western edge of the Northeast CSC and are particularly vulnerable to future changes in climate and disturbance regimes.

Effects of climate, disturbance, and management on the growth and dynamics of temperate and sub-boreal forest ecosystems within the Lake States and New England

This project is using tree-ring patterns and long-term data collections from natural and managed forests across the Lake States, New England, Intermountain West, and Black Hills to identify forest management strategies and forest conditions that have conferred the greatest levels of resistance and resilience to past stressors and their relevance in addressing future environmental change.

Evaluating the impacts of climate change in the Connecticut River Basin

For the past four years, The Nature Conservancy (TNC) and the US Army Corps of Engineers (Corps) have funded a study at UMass to evaluate the impacts of climate change on the biological resources in river and to investigate how the negative impacts of reservoir regulation could be ameliorated in the face of climate change.  It is fortuitous that this study provides an excellent basis for future “watershed” type studies that may be performed by the NECSC.

A Research and Decision Support Framework to Evaluate Sea-level Rise Impacts in the Northeastern U.S.

Previous approaches to quantify coastal vulnerability to sea-level rise have had major shortcomings, including the possibility that their underlying assumptions are not uniformly valid. This project conducted a study to distinguish the differing ways that coastal areas of the northeastern U.S. will respond to sea-level rise. This information will be used to develop a scientific research and decision-support program that addresses the cross-cutting and unique problems in these areas related to climate change and sea-level rise.

A Stream Temperature Inventory Network and Decision Support Metadata Mapper - Evaluating the Resources to Understanding Climate Change Effects on Streams in New England and the Great Lakes States

Stream data for the northeastern U.S. are needed to enable managers to understand baseline conditions, historic trends, and future projections of the impacts of climate change on stream temperature and flow, and in turn on aquatic species in freshwater ecosystems. This project developed a coordinated, multi-agency regional stream temperature framework and database for New England (ME, VT, NH, CT, RI, MA) and the Great Lakes States (MN, WI, IL, MI, IN, OH, PA, NY) by building a community around the efforts of this study.

Characterization of Spatial and Temporal Variability in Fishes in Response to Climate Change

Currently, there exists much uncertainty regarding how climate change will influence different populations or ecosystems. To improve current understanding and forecasting of population responses to climate variability, the role of variability must be considered when examining system dynamics and species interactions. This project will use an analytical framework to quantitatively estimate how variation in fish populations may respond to climate change and other important changes regionally.

Subscribe to Research community