Resource Managers

Also collaborating on these NE CSC projects

Regional Effort on Invasive Species and Climate Change (RISCC) Management

Invasive species and climate change represent two of the five major global change threats to ecosystems.  An emerging initiative of the Northeast Climate Science Center aims to develop management-relevant research to improve invasive species management in the face of climate change.  Through working groups, information sharing and targeted research, this project addresses the information needs of invasive species managers in the context of climate change.

Assessing potential impacts of climate change on carnivore occupancy and snowshoe hare demography along elevational and latitudinal gradients in the Northeastern U.S.

This project is evaluating the relative influence of climate, habitat, and competition on predator-prey dynamics with a focus on Canada lynx, American marten, and snowshoe hares.  Snowshoe hares are a keystone species in the boreal forest and vulnerable to climate change.

Predicting the fate and impact of watershed nutrient loads as Lake Michigan's hydrodynamics shift under climate change

Climate change is shifting the hydrodynamics and temperature of both the Great Lakes and their tributary rivers.  Both hydrology and temperature may play potent roles in mediating the magnitude of watershed nutrient load and their fate upon reaching the lake.  Tributary hydrology reflects the source of water (groundwater vs surface runoff) and seasonal timing of discharge, while tributary temperature determines the density difference between river and lake water.  Similarly, mixing patterns in these massive lakes strongly influence whether tributary loads remain near the shore or become dil

Linking Species' Responses to Climate Extremes

We are identifying historical relationships between climate extremes and species abundance, and then developing downscaled climate projections for the extreme climate metric. This information is then used to provide an initial projection of how the species abundance and location may change in the future. These initial assessments can help inform future assessments that consider broader types of climate and ecological information.

This prorovides information on how key species may change in the future, to help inform natural resource management.

Scaling phenological patterns of canopy carbon cycling: Integrating physiology, canopy imagery, and net ecosystem exchange

Changing climate is predicted to shift the phenology of plant processes, with implications for ecosystem functions, such as carbon assimilation and storage. This project examines leaf-level parameters of carbon cycling and links them to canopy-scale measures of ecosystem exchange and near-remotely-sensed color indicies.

Long-term record of Atmospheric N deposition interact with climate to influence estuarine impacts

Atmospheric depostion can be an important contribution to nitrogen loading in coastal regions. Atmospheric loading is suggested to have declined due to pollution control efforts, however the degree and impact of this has not been quantified on Cape Cod. Additionally, it is predicted that climate change, especially with respect to rain events and durations, may interact with atmospheric conditions to affect estaurine productivity.  This project will analyze a long-time series of atmpsheric N deposition and climate to determine trends and the associated impacts to estaurine systems. 

Ecological and management implications of climate change induced shifts in phenology of coastal fish and wildlife species in the Northeast CSC region

Climate change is causing species to shift their phenology, or the timing of recurring life events such as migration and reproduction, in variable and complex ways. This can potentially result in mismatches or asynchronies in food and habitat resources that negatively impact individual fitness, population dynamics, and ecosystem function. Numerous studies have evaluated phenological shifts in terrestrial species, particularly birds and plants, yet far fewer evaluations have been conducted for marine animals.

Circulation patterns associated with climate extremes

The variability of winter precipitation over the northeastern United States and the corresponding teleconnections with five dominant large scale modes of climate variability (Atlantic Multi-decadal Oscillation, AMO, North Atlantic Oscillation, NAO, Pacific-North American pattern, PNA, Pacific Decadal Oscillation, PDO, and El Niño–Southern Oscillation, ENSO) were systemically analyzed in this study.  Three leading patterns of winter precipitation were first generated by empirical orthogonal function (EOF) analysis.

Multi-model regional model simulations for future climate scenarios

General circulation models and high resolution regional climate models (RCMs) are being used to simulate climate of the recent past and to project future climate change across the northeastern US.  We are interested in the timing of changes regionally, as compared to the changes occcurring nationally and globally, and the patterns of key parameters that are of relevance to natural systems (frost occcurrence, snow cover, drought, fire hazard conditions, etc).  We are also assessing the consistency of climate models in simulating recent climate changes, in order to improve confidence in futur

Subscribe to Resource Managers